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Abstract

Clinical investigations of many neuropsychiatric disorders rely on the assumption that diagnostic categories and typical
control samples each have within-group homogeneity. However, research using human neuroimaging has revealed that
much heterogeneity exists across individuals in both clinical and control samples. This reality necessitates that researchers
identify and organize the potentially varied patterns of brain physiology. We introduce an analytical approach for arriving at
subgroups of individuals based entirely on their brain physiology. The method begins with Group Iterative Multiple Model
Estimation (GIMME) to assess individual directed functional connectivity maps. GIMME is one of the only methods to date
that can recover both the direction and presence of directed functional connectivity maps in heterogeneous data, making it
an ideal place to start since it addresses the problem of heterogeneity. Individuals are then grouped based on similarities in
their connectivity patterns using a modularity approach for community detection. Monte Carlo simulations demonstrate
that using GIMME in combination with the modularity algorithm works exceptionally well - on average over 97% of
simulated individuals are placed in the accurate subgroup with no prior information on functional architecture or group
identity. Having demonstrated reliability, we examine resting-state data of fronto-parietal regions drawn from a sample
(N = 80) of typically developing and attention-deficit/hyperactivity disorder (ADHD) -diagnosed children. Here, we find 5
subgroups. Two subgroups were predominantly comprised of ADHD, suggesting that more than one biological marker
exists that can be used to identify children with ADHD based from their brain physiology. Empirical evidence presented here
supports notions that heterogeneity exists in brain physiology within ADHD and control samples. This type of information
gained from the approach presented here can assist in better characterizing patients in terms of outcomes, optimal
treatment strategies, potential gene-environment interactions, and the use of biological phenomenon to assist with mental
health.
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Introduction

For many clinical disciplines disease status is initially identified

from symptoms and verified via biological measures. For example,

insomnia may be brought to a doctor’s attention based on patient

self-report, but the symptom can be attributed to diverse causes

including lifestyle changes, hyperthyroidism, or Cushing’s disease.

Only through biological testing can the cause be identified and an

appropriate treatment plan created. In contrast, the diagnosis and

categorization of mental health disorders, such as attention-

deficit/hyperactivity disorder (ADHD), typically relies solely on

observable symptom clusters [1]. It is possible, if not likely [2,3],

that as with insomnia multiple mechanisms may lead to similar

symptom clusters for a given mental disorder as defined by the

Diagnostic and Statistical Manual of Mental Disorders (currently,

DSM-5) or International Classification of Diseases (ICD). Clusters

of symptoms that culminate to a diagnosis may relate to different

neurobiological etiologies despite being under the same broad

diagnostic category [4].

While it is largely agreed that the above possibility exists, studies

examining the etiology of any given disorder typically ignore the

potential heterogeneity that exists within current symptom-based

classifications. In accordance with the current standard, analyses

are conducted as though both the diagnostic group and the

comparison control group represent two homogeneous popula-

tions. This approach makes two assumptions: (1) that the

neurobiology for predefined diagnostic groups is distinct from

those in another predefined group; and (2) that individuals are

homogeneous within these predefined groups. A critical review of

literature reveals that these assumptions are rarely met [5–7].
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Moreover, assuming within-group homogeneity will likely cause

misleading results at the aggregate level [8–10] in addition to

missing important features for subpopulations within a given

category.

This reality does not imply that current diagnostic categoriza-

tion is completely arbitrary or not informative. However, it does

present a significant barrier in the development of genetic and

biological markers to assist in accurate diagnoses for a given

disorder. Although small literatures have made attempts to parse

fMRI data across individuals using various statistical methods (e.g.,

[11]), none have been sufficiently accepted to fall into wide use.

Furthermore, efforts to subdivide based solely on biological

features are still extremely rare (with notable exception using

heart rate data [12]). The development of treatments, preventa-

tive, and intervention strategies for a given individual also suffer

from this confound. Motivated by these issues, we present an

approach for arriving at the potentially varied neurobiological

etiologies related to a given mental health disorder, and show its

utility in characterizing ADHD.

Specifically, we organize individuals into subgroups based on

their brain connectivity maps. Brain connectivity maps have been

used to identify systematic differences between subgroups and

conditions in both clinical and non-clinical populations (e.g.,

[5,13]). On these dynamic features of the individual, we conduct

community detection to arrive at subgroups of individuals based

entirely on their functional brain architecture. This approach will

enable new insights into the number of biologically-based

subgroups within any diagnostic category, including typically

developing populations, by looking at the functional connectivity

of regions.

We sought an approach that would be widely applicable,

accessible, and useful. Since we wished to move away from

classification of surface symptoms and towards classification based

on neurobiological features of the brain, we required an algorithm

for arriving at data-driven classification using no a priori

information regarding category status or symptoms but rather

uses features of brain functioning that are in line with current

theories and approaches for understanding brain processes.

Accordingly, several points of consideration helped guide the

search for an optimal approach. For one, the method must be

useful on data that comes from non-invasive techniques for

understanding brain physiology. Additionally, since not all

individuals with mental disorders are capable of doing difficult

paradigms and experimental designs differ greatly across sites, the

method should not require examining responses to experimental

manipulation. Two, given that brain processes can best be thought

of as coordinated activity of disparate regions across time [14,15],

we necessitated an approach for arriving at precise brain

connectivity maps that quantifies relations among brain regions

across time for each individual. This requires a state-of-the-art

statistical method tailored to the data that detects signal from

noise. Three, the algorithm must organize the individual-level

models into subgroups based on brain connectivity estimates

without prior classification information.

Our method (see Figure 1) satisfies these requirements by

combining: (1) functional MRI (fMRI) collected while participants

are not engaged in a specific task (i.e. resting-state functional

connectivity MRI – rs-fcMRI; [16]); (2) unified structural equation

modeling (uSEM) [17,18] conducted with Group Iterative

Multiple Model Estimation (GIMME) [10] to ensure accurate

individual level measurements of functional connectivity among

brain regions; and (3) a widely used community detection

algorithm [19], modularity, to arrive at data-driven subgroups of

individuals based on brain processes rather than clusters of signs

and symptoms. A benefit of rs-fcMRI is that it is developmentally

and contextually more variable than brain structural measures,

making it a highly attractive place to start towards the goal of

identifying subgroups of individuals based on similar brain

processes. Furthermore, it can be administered at across any age

range, species, or cognitive ability. Prior rs-fcMRI analyses have

revealed that there is ongoing information processing between

spatially disparate regions of the brain even during rest, and

differences in these observed processes relate to cognitive

performance as well as psychiatric disorders. Connectivity maps

conducted on rs-fcMRI data thus carry vast potential to advance

understanding of normative and suboptimal brain processes.

Taken together, our approach is a robust and easily applied

method that utilizes functional connectivity networks to arrive at

brain-based subgroups with no prior classification information.

Methods

GIMME
A necessary requirement for any project aiming to make

inferences from directed functional connectivity maps is that they

be reliable. Recent work demonstrated that most methods fail in

their ability to recover both the presence and direction (i.e., which

ROI statistically predicts the other ROI as opposed to bidirec-

tional correlation between the two) of brain connections for

individuals [20]. We utilize one of the only approaches to date that

has been shown to reliably recover these parameters in heteroge-

neous and homogeneous samples of individuals: Group Iterative

Multiple Model Estimation (GIMME; http://www.nitrc.org/

projects/gimme/) [10]. GIMME first looks across individuals to

detect signal from noise to arrive at a map that contains lagged

and contemporaneous directed connections that exist for the

majority (‘‘group map’’). In a second step GIMME identifies

individual-level connections using the group-derived parameter

patterns as a starting point. This has been shown to vastly improve

reliability and precision of individual-level connections [10].

GIMME estimates the weight of these connections from within a

unified Structural Equation Model (uSEM) [17] framework.

Unified SEM contains both lagged and contemporaneous directed

relations among regions, making it ideal for biological systems that

likely contain these effects as detailed in [18].

Subgrouping with community detection
For the final step, we utilize Newman’s commonly used

modularity algorithm [19] found in the Brain Connectivity

Toolbox (http://www.brain-connectivity-toolbox.net) to arrive at

data-driven subgroup classifications of individuals using solely the

results from the directed functional connectivity analysis. Prior

work in fMRI using this modularity algorithm required that the

researcher set an arbitrary threshold, or cutoff point, for what

constitutes similarity between any two given individuals. Re-

searchers would then arrive at thresholds by looking for

consistency in community detection results at multiple thresholds

(e.g., [2,21,22]). Rather than rely on subjective cut-offs we utilized

an entirely data-driven approach to thresholding guided by the

same principals.

Modularity uses an input matrix which indicates the relatedness

among N nodes, which in this case is n = 1…N individuals. To

obtain this matrix, a first step in the present approach is to

vectorize each individual’s contemporaneous connection weights

as estimated by GIMME. Recent work suggests that contempo-

raneous relationships best capture neuronal relations from BOLD

data [20]. Including the lagged relations via uSEM ensures

unbiased estimates of these contemporaneous relations [18]. Given
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the high degree of heterogeneity seen in the individual-level

connections, including the individual-level paths may result in

groups too small to offer any value over individual-level analysis.

Thus we aim to subgroup individuals based on the similarities they

share in their values in the sample-level paths. While only the

sample-level connections are included to arrive at a correlation

coefficient for each pair of individuals, it is necessary to estimate

the individual-level connections when identifying the final models

because these connections will ensure precise estimates of the

connections we wish to use [23]. An added benefit is that sample-

level connections will have normally distributed estimates across

individuals, making it appropriate for the correlation analysis to

follow.

The strength of linear dependence for the beta vector of each

individual ‘‘i’’ with the beta vector of each other individual ‘‘j’’ is

computed to produce a correlation matrix X. Following common

practice in fMRI the weighted N by N matrix X is then binarized

to create an A matrix where Aij indicates if individual ‘‘i’’ is similar

to individual ‘‘j’’ according to a given threshold r:

Aij

1 if Xij§r

0 if Xijvr

�
ð1Þ

which can then be used in Newman’s modularity maximization

algorithm; full equations for the method are explained in [19].

Deciding on the value for r, the threshold for which individuals

are considered similar constitutes a pivotal decision in the

algorithm. Researchers commonly select thresholds (or solutions)

that provide the highest modularity index. Two criteria drive our

threshold selection algorithm. One, the classification must be

reliable across multiple runs. The modularity index can demon-

strate considerable variability across iterations because it is

sensitive to starting conditions that change randomly across runs.

Researchers do not always consider this specific problem. Two,

each individual must be reachable (i.e. have a connected path from

one individual to another) by most other individuals at the given

threshold [15]. Here, reachability is defined as the average

number of individuals that each person can reach.

The modularity algorithm [19] is conducted at each threshold

100 times. To investigate the first criteria, the stability of Q across

these 100 community detection attempts is examined. Figure 2

illustrates the instability seen in the Q value. This instability

corresponds to different subgroup denotations, such that choosing

a subgroup assignment for one run might differ from a second run

at the same threshold. As depicted in Figure 2 and the top panel of

Figure 3, the Q index becomes unstable at certain thresholds. This

is a due to the program being sensitive to starting conditions,

which change randomly across each run. An optimal r threshold

would provide community solutions that are stable across each

run, indicating that the solution is robust to different starting

points.

Our next criterion is the reachability index. For each threshold

we see that the reachability drops prior to the Q index reaching

maximum instability (Figure 3, middle panel). This supports our

decision to choose a threshold that occurs prior to the drop off in

Figure 1. Schema of analytic process. Analysis were conducted using the following steps: a) obtain timeseries of functional MRI observations
from regions of interest; b) arrive at directed functional connectivity maps for each individual using GIMME; c) correlate each individual’s vector of
connection weights with every other individual’s vector for a similarity matrix; d) apply Newman’s modularity maximization algorithm to similarity
matrix to arrive at subgroups of individuals based on similar brain connectivity patterns.
doi:10.1371/journal.pone.0091322.g001
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reachability as this relates to community quality. The middle panel

of Figure 3 depicts the process for finding the drop in reachability.

A line is generated from the first to last point of the average

reachability across r thresholds. Next, we find the greatest distance

from this line to the reachability values using perpendicular angles

to determine the point at which reachability drops.

The bottom panel of Figure 3 shows the Q estimates for each

threshold (conducted 100 times) up until the point where

reachability drops. Please note that even at low values some

thresholds are unstable, as indicated by fluctuations in the Q,

whereas others reliably obtain the same Q across 100 attempts.

Simulated and empirical data reveal that when Q is stable for this

specific binary modularity algorithm, the subgroups are also stable

Figure 2. Instability in Q index. This is taken across 100 iterations at each threshold from 0.0 to 1.0 at .01 increments.
doi:10.1371/journal.pone.0091322.g002

Figure 3. Q index and reachability across thresholds. Q values across all thresholds (top panel); average number of individuals each individual
can reach at each threshold (i.e., reachability) and visual depiction (grey, dotted lines) of approach for defining the point at which reachability begins
to decrease (middle panel); Q values (bottom panel) up until drop in reachability (denoted with a red circle in the middle panel). The optimal r
thresholds with maximum stability, Q index value, and reachability criteria were .60 and .56 for the simulated data example presented here (1 of 100
runs) and empirical data, respectively.
doi:10.1371/journal.pone.0091322.g003
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(see Results below). The standard deviation of Q across 100

estimates is used to quantify stability. We select the threshold for

which the Q index has maximum stability; in the event of a tie, the

highest r with the highest Q is selected. The correlation threshold r

is set and the above A matrix is created accordingly and used in

the binary modularity algorithm [19].

Verifying the robustness of community detection
solution

We followed the analytic plan outlined by Kerrer and colleagues

[24] for testing the robustness of community structures in our

simulated and empirical data. We quantified the difference

between each run using the variation of information (VI) criterion

developed by Meilă [25]. We use the VI index here to look at the

robustness of community structures across varying levels of

perturbations. This helps identify if the community structure is

dependent on a small proportion of the data points and thus easily

attributed to chance. First, we arrived at a final solution for each of

the simulated and empirical data examples as outlined above.

Here, ‘‘network’’ refers to the binary matrix of similarity at the

chosen r threshold. Second, we randomly perturb the networks in

a manner that retains the degree, or the number of edges, for each

individual (i.e., vertex) by removing edges in the original network

and placing it between two other individuals in the same network

[24]. We conducted perturbations across probability levels which

ranged from none (0) to completely random (1) at .025 increments.

Each network (i.e., the 100 simulated data sets and the empirical

data results) were randomly perturbed at each probability level

100 times. Third, we conducted community detection algorithm

with data-driven thresholding for each of the perturbed networks

to arrive at community structures. Finally, we took the community

structures from the perturbed networks and measured the

variation of information between these community assignments

and the original one.

Comparing connectivity maps between subgroups
Variation in the connection weights of specific connections

between two given ROIs has long been a focal point of fMRI

research [17]. Having arrived at data-driven subgroups, group-

level weights are compared between the subgroups to see how

each subgroup differs from the average of the other subgroups.

ANOVA with false discover rate (FDR) correction, at alpha of

0.05, was used to look at differences in beta weights for group-level

connections [26]. As a comparison to the typical method for

examining ADHD brain connectivity patterns, we also compare

the connection weights between the control and ADHD groups

using the diagnostic categorization.

Data

Simulated data
Simulated time series of fMRI data for 10 brain regions for 100

individuals were used to demonstrate feasibility and reliability of

our approach following the approach outlined in [10]. For the

present simulation, each individual has a time series of length 200

scans (at 2 TRs). All ROIs for all individuals have autoregressive

effects of weight 0.60. In addition to these and as depicted in

Figure 4a, 9 contemporaneous paths exist for all individuals

comprising this sample. These paths are generated to have a

weight (technically ‘‘beta’’) of 0.50 unless specified otherwise. For

each subgroup, 3 of the 9 group-level beta estimates differ from .5

by 6.2 (refer to Figures 4b–e for specifics). Additionally, in each

subgroup there exists one unique connection that randomly occurs

across individuals comprising that subgroup using a binomial

distribution with a probability of 0.5. This last level of

heterogeneity adds in some individual-level variation within the

group. The degree of similarity to expect as well as the variability

in connection weights has been informed by previous research that

used individual-level connectivity maps to examine a priori

defined subgroups (e.g., [5])

Empirical data set
We demonstrate the utility of this approach in a sample of 80

children (29 females and 51 male) aged 7–12 years old, of which

40% met DSM-IV and DSM-5 diagnostic criteria for Attention-

Deficit/Hyperactivity Disorder (ADHD) by a multi-method,

multi-informant, best-estimate procedure that we have described

in detail elsewhere [27,28] and summarized below. Written

informed consent was obtained from parents and written informed

assent from all child participants in accordance with the guidelines

of the Oregon Health and Sciences University (OHSU) Research

Integrity Office (IRB). The OHSU IRB approved this study.

Psychiatric diagnoses were based on multi-method, multi-

informant research evaluations by our team with 1) Kiddie Schedule

for Affective Disorders and Schizophrenia - KSADS-I [29,30] adminis-

tered to a parent, 2) parent and teacher (short form) Conners’ Rating

Scale-3rd Edition [31] and Strengths and Difficulties Questionnaire

(SDQ), (3) IQ and academic screening, (4) behavioral observations

by a clinical interviewer, and then 5) a best-estimate clinical review

by a board certified child psychiatrist and licensed clinical

neuropsychologist. They independently assigned all appropriate

diagnoses, with adequate agreement (kappa..75 for all disorders

with base rate .5% in a larger sample of several hundred children

they have reviewed) and kappa ..80 for ADHD. They

conferenced any disagreements and readily reached agreement

or else the case was excluded. Estimates of intelligence were

evaluated with a three-subtest short form (Block Design, Vocab-

ulary, and Information) of the Wechsler Intelligence Scale for Children,

Fourth Edition (WISC-IV) [32]. Demographic details including

diagnostic status and IQ is provided in the Table 1.

Children were excluded if they did not meet DSM-IV criteria

for ADHD or criteria for typically developing control. Children

were also excluded for an IQ,75, or if a history of neurological

illness, chronic medical problems, sensorimotor handicap, autistic

disorder, mental retardation, or significant head trauma (with loss

of consciousness) was identified by parent report. Children were

also excluded if they had evidence of psychotic disorder or bipolar

disorder on the structured parent psychiatric interview or were in a

current major depressive episode. Children prescribed short-acting

stimulant medications were scanned after a minimum washout of

five half-lives (i.e., 24–48 hours depending on the preparation); all

other psychoactive medications were a rule-out. Typically

developing control children (TDC) were excluded for presence

of conduct disorder, major depressive disorder, or history of

psychotic disorder, as well as for presence of ADHD. All children

were right handed.

Data Acquisition and Processing

Participants were scanned using a 3.0 Tesla Siemens Magnetom

Tim Trio scanner (Siemens, Erlangen, Germany) with a twelve-

channel head-coil at the OHSU Advanced Imaging Research

Center. One high-resolution T1-weighted MPRAGE sequence

lasting 9 minutes and 14 seconds (TR = 2300 ms, TE = 3.58 ms,

orientation = sagittal, 2566256 matrix, resolution = 13 mm) was

collected. Blood-oxygen level dependent (BOLD)-weighted func-

tional imaging data were collected in an oblique plane (parallel to

the ACPC) using T2*-weighted echo-planar imaging

Organizing Heterogeneous Functional Networks
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(TR = 2500 ms, TE = 30 ms, flip angle = 90u, FOV = 240 mm, 36

slices covering the whole brain, slice thickness = 3.8 mm, in-plane

resolution = 3.863.8 mm). Steady state magnetization was as-

sumed after 5 frames (,10 s). Three runs of 3.5 minutes each

were obtained. During rest periods subjects were instructed to stay

still, and fixate on a standard fixation-cross in the center of the

display.

All functional images were preprocessed in the same manner to

reduce artifacts. These steps included: (i) removal of a central spike

caused by MR signal offset, (ii) correction of odd vs. even slice

intensity differences attributable to interleaved acquisition without

gaps, (iii) correction for head movement within and across runs,

and (iv) within-run intensity normalization to a whole brain mode

value of 1,000. Atlas transformation of the functional data was

computed for each individual via the MPRAGE scan. Each run

then was resampled in atlas space [33] on an isotropic 3 mm grid,

combining movement correction and atlas transformation in one

interpolation [34]. All subsequent operations were performed on

the atlas-transformed volumetric time series.

Functional connectivity preprocessing followed prior methods

[35–37]. These steps included: (i) a temporal band-pass filter

(0.009 Hz,f,0.08 Hz) and spatial smoothing (6 mm full width at

half maximum), (ii) regression of the whole brain signal averaged

over the whole brain, (iii) regression of ventricular signal averaged

from ventricular region of interest (ROI), and (iv) regression of

white matter signal averaged from white matter ROI. Regression

of first order derivative terms for the whole brain, ventricular, and

white matter signals were also included in the correlation

preprocessing. These preprocessing steps are thought to reduce

spurious variance unlikely to reflect neuronal activity [38].

Subjects underwent several rigorous steps to correct for head

motion during scanning. At the first level of correction (i.e.,

traditional motion correction), motion was measured relative to a

reference frame (in this case, the middle frame of a BOLD run)

and quantified using an analysis of head position based on rigid

body translation and rotation. This procedure results in the rigid

body transform defined by six motion parameters (3 translation, 3

rotation) typically generated by most functional MRI software

tools. These 6 parameters were used as regressors in preprocessing

to remove potential motion related artifact. In addition, in an

effort to remove participants with egregious motion, we began our

analysis by filtering those subjects with high movement runs based

on root mean square (RMS). The data derived from the 6 motion

parameters needed to realign head movement on a frame-by-

frame basis were calculated as RMS values for translation and

rotation in the x, y, and z planes in millimeters. Total RMS values

were calculated on a run-by-run basis for each participant.

Participant’s BOLD runs with movement exceeding 1.5 mm RMS

were removed. Last, frame-to-frame displacement (FD) was

calculated for every time point. FD was calculated as a scalar

quantity using a formula that sums the values for framewise

displacement in the six rigid body parameters (FDi = |Ddix|+|D-
diy|+|Ddiz|+|Dai|+|Dbi|+|Dci|, where Ddix = d(i21)x 2dix,

and similarly for the other five rigid body parameters) [21]. At

each time point, if the FD was greater than 0.2 mm, the frame was

excluded from the subject’s time series by a placeholder row of

missing values so the temporal ordering of scans was retained for

uSEM analysis.

We selected 11 regions of interest based on prior work by

Dosenbach and colleagues [22,39,40]. These regions termed the

fronto-parietal network (see Figure 5a) were selected based on their

Figure 4. Patterns of effects used to simulate data and results.
doi:10.1371/journal.pone.0091322.g004

Table 1. Demographics of empirical sample.

ADHD TDC Statistic

Mean Age in Years 9.68 (1.52) 9.13 (1.20) t = 1.83, df = 78, p = .07

% Male 78% 46% x2 = 4.77, df = 1, p = .03

IQ 110.81 (15.11) 116.92 (13.75) t = 1.76, df = 70, p = .08

Standard deviation in parentheses. Eight values for IQ are missing (5 ADHD, 3
TDC).
doi:10.1371/journal.pone.0091322.t001

Organizing Heterogeneous Functional Networks
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implied role in adaptive task level control that surfaces in resting

state studies [40,41] and atypical nature in studies of ADHD

[42,43]. Table 2 lists the 11 ROIs and coordinates. Time series

were computed for each of the cortical regions by averaging the

signal intensity across all voxels within a 10 mm sphere for each

time point.

Results

Simulated data
For the simulated data, GIMME was able to recover all of the

connections which existed at the group level for each of the 100

sets of data (see Figure 4a). After considering individual-level

connections (which varied systematically across subgroups), on

average 99.73% (std. = 0.09%, range = 95–100% across the 100

data sets) of the connections across all individuals were recovered

accurately (i.e., both the presence and direction were correct). The

community detection algorithm described above then identified

the subgroups excellently: 97.23% (std. = 1.87%, range = 92–

100%) of the individuals within each data set were placed in

subgroups with those who shared their simulated brain map

pattern. ANOVA results consistently revealed significant differ-

ences in connection weights across the subgroups that correspond-

ed with the patterns used to create the data that was consistent

across the 100 simulated data sets (Figure 4b–e). This, taken

together with the reliable recovery of subgroup classification,

verifies that the present approach appropriately groups individuals

who are indeed similar.

As an added check, we tested the modularity approach on

randomly generated graphs to ensure robustness of our solution as

described in the methods [24]. The subgroups were consistently

recovered in the simulated data and were robust to minor

perturbations. Figure 6a displays the results from a representative

simulated data set (number 11 of 100). The simulated data results

adhere to the ideal pattern described by Karrer and colleagues.

The community assignments remain similar for the simulated

individuals until a perturbation level of about .5 (i.e., random

assignment of 50% of the edges), at which point 20% of the

vertices are assigned different communities than the original and

we see this variation of information increasing steadily past this

point. The randomly generated graphs, by contrast, experience a

sharp increase in variation of information at the slightest

perturbation. Indeed, over 40% of the vertices have different

community assignments after perturbing about two percent of the

edges.

Figure 5. Regions and results from empirical sample. Red lines indicate the subgroup had higher connection values than the average of the
other subgroups; blue lines indicate the subgroup had lower connection values than the average of the other subgroups; gray paths indicate the
connection values were similar to the average of other subgroups. Abbreviations: ‘‘dlPFC’’ = dorsolateral prefrontal cortex; ‘‘FC’’ = frontal cortex;
‘‘IPS’’ = intraperietal sulcus; ‘‘IPL’’ = inferior parietal lobule; ‘‘R’’ preceding these ROI names and abbreviations denotes right and ‘‘L’’ denotes left.
doi:10.1371/journal.pone.0091322.g005

Table 2. Coordinate locations of regions in Talaraich space.

Region X Y Z

L dlPFC 243 22 34

R dlPFC 43 22 34

L FC 241 3 36

R FC 41 3 36

midcingulate 0 229 30

L IPL 251 251 36

R IPL 51 247 42

L IPS 231 259 42

R IPS 30 261 39

L precuneus 29 272 37

R precuneus 10 269 39

‘‘dlPFC’’ = dorsolateral prefrontal cortex; ‘‘FC’’ = frontal cortex;
‘‘IPS’’ = intraperietal sulcus; ‘‘IPL’’ = inferior parietal lobule; ‘‘R’’ preceding these
ROI names and abbreviations denotes right and ‘‘L’’ denotes left.
doi:10.1371/journal.pone.0091322.t002
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Empirical data
The connectivity map depicted in Figure 5b provides the

connectivity pattern of the fronto-parietal region set common for

the majority of individuals in the whole sample (i.e. connections

found to be significant for the majority, or the ‘‘group map’’). In

addition, a number of connections surfaced at the individual level

(not pictured). Every individual had at least one connection in

addition to those found at the group-level, and every potential

connection between regions was found for at least one person.

Hence there appears to be some connections that exist for the

majority of individuals while there also exists a large degree of

heterogeneity in the structure of connections as evidenced by the

extra connections uncovered at the individual level. This finding

highlights the need to use a method such as GIMME which is

geared towards detecting signal from noise to reliably arrive at the

presence of individual-level connections which in turn improve

upon the precision of connection weight estimates.

We first compared path weights by considering the ADHD and

Typically Developing samples to be two homogenous groups, akin

to how current research projects are typically conducted. That is,

we placed and analyzed the individuals into groups based on their

diagnostic status. Here, our search is limited to differences between

these two diagnostically defined groups. Tests for significant

differences between ADHD and TDC on the path weights

revealed no significant differences. Hence it appears the within-

group heterogeneity washed out effects of interest that we were

able to isolate by enabling for heterogeneity within the diagnostic

categories.

We then applied the community detection algorithm to group

individuals based on their brain patterns of connectivity as

opposed to their diagnostic status. The community detection

approach arrived at 5 subgroups of individuals. Regarding the

robustness of the solution as quantified using VI, the curves for the

empirical and random data remain distinct and thus the network

of individuals can be said to show community structure (see

Figure 6b; [24]). Since there are a higher proportion of males than

females diagnosed with ADHD, we first investigated if males and

females were evenly distributed across the subgroups. The

proportions of males and females in each of the subgroups were

not different than what one would expect by chance (x2 = 3.65,

df = 4, p = .456). ADHD and TDC participants, however, were

placed in different subgroups at levels greater than chance

(x2 = 12.32, df = 4; p = .015; Figure 7). Of note, 38% of the

controls are in subgroup A (see Table 3 for results). Subgroups B

and D contain a high percentage of the ADHD children, who

make up a large part of these subgroups. The smaller subgroups C

and E are disproportionately control, but contain relatively small

percentages of the control sample. Taken together, subgroups A,

C, and E are subgroups with low likelihood for ADHD and as such

have an organization of brain physiology that we term ‘‘protec-

tive.’’ That is, individuals with brain connectivity maps similar to

those found in these groups will likely not have ADHD. Subgroups

B and D appear to have brain organizations that place them at

higher likelihood for having ADHD. These findings demonstrate

that heterogeneity exists within both control and ADHD

populations, and that the potential differences between the two

Figure 6. Variation of information (VI) in simulated and empirical data across varying degrees of perturbation. Red triangles indicate
VI values obtained from random perturbations; black squares correspond to VI values obtained on the original matrices.
doi:10.1371/journal.pone.0091322.g006

Figure 7. Subgroup make-up: Controls and ADHD.
doi:10.1371/journal.pone.0091322.g007
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categories are washed out when assuming within-group homoge-

neity.

Numerous differences in the connection weights existed across

the groups (Figures 5c–g). For instance, subgroup A (protective)

was the only subgroup to have stronger interhemispheric

connections than the average of the other subgroups in both the

anterior and posterior regions. In subgroup B (risk), by compar-

ison, the statistical prediction of the left inferior parietal lobule (L

IPL) from the right inferior parietal lobule (R IPL) was weaker, but

like subgroup A had strong directed influence of the left frontal

cortex (L FC) on the R FC. Importantly, subgroup B had lower

directed connectivity strength from the left dorsolateral prefrontal

cortex (L dlPFC) to the left intraparietal sulcus (L IPS), which is

consistent with previous research on deficits in attention [44].

However for this connection, subgroup D (also a risk group for

ADHD) evidenced a stronger directed connection, suggesting that

more than one pathway for attention deficits exists. Indeed,

subgroup D (risk) appears to have decreased connectivity from the

L FC to the R FC when compared to the average of the other

groups, indicating a potential biological marker for ADHD in

addition to the L dlPFC and L IPS deficit found in subgroup B and

previous research. Subgroup E (protective) had decreased

connectivity on a number of connections predominantly associated

with the frontal regions. Taken together, there appears to be

different physiological markers within the ADHD diagnostic

category as well as different profiles within the control sample.

Discussion

The current analysis presents a beginning effort at establishing

empirically driven, brain-based subtypes in mental disorders. We

combined and extended state-of-the-art methods to arrive at a

dynamic community detection approach for characterizing

differences in brain physiology, tested it using Monte Carlo

simulations, and validated the approach with empirical data. Our

approach differs from current implementations in at least two

meaningful ways. For one, similarities among individuals are

assessed using the entire pattern of connections as opposed to

alternative methods that simply take one aspect, such as one

connection weight or statistical parametric maps. In this way our

approach is directly in line with the current understanding of brain

functioning as best understood as the connectivity between

disparate regions as opposed to isolated areas. Two, no

assumptions are made regarding the classification of individuals.

Traditional methods, such as machine learning or discriminant

analysis, require a priori distinction of subgroups based on the

construct of interest (e.g., gender, age, clinical category, perfor-

mance). Humans are multidimensional and can be categorized on

various axes [2,45]. For this reason, a complementary way to look

at group differences is presented here. The present approach

organizes individuals based on their functional brain physiology,

from which researchers can then examine how a given group

relates to demographic, clinical, and performance characteristics.

The feasibility of using GIMME and community detection to

arrive at data-driven subgroups of individuals based on brain

physiology was demonstrated via our simulations. As seen

previously [10], GIMME reliably recovered the presence and

true direction of connections at the group and individual levels and

is one of the few approaches that can do so [46]. Next, a widely

used algorithm for arriving at subgroups, the modularity approach

[19], was used for subgroup classification. This procedure was

modified to arrive at the optimal solution in an entirely data-

driven fashion. Subgroup designations were accurately made using

the GIMME individual-level connectivity map estimates.

The empirical data example offered concrete evidence for

theories that have hitherto been untested. That is, within

diagnostic categories there exists heterogeneity in brain physiol-

ogies. In particular, researchers have made strong assertions that

clinical diagnoses may result from multiple etiologies [3,4]. This

possibility has been noted in ADHD as well as Autism Spectrum

Disorder [3,47]. Most evidence for this phenomenon has been

from neuropsychological data and behavior or symptom report

(e.g., [2]), with recent evidence suggesting heterogeneity in the

biological components as well [48]. In this sample, ADHD appears

to have at least two main biological manifestations related to the

fronto-parietal regions that differentiated individuals within this

diagnostic category. In line with previous research [44], one of the

ADHD-dominant subgroups did have weaker dorsolateral pre-

frontal cortex connection with the inferior parietal sulcus.

However, the other ADHD-dominant subgroup had increased

connectivity between these two regions but had decreased

connectivity between the right and left frontal cortex. Hence

grouping all ADHD individuals together may not capture all of the

informative characteristics of the disorder and in this sample,

washed out meaningful differences.

Although the majority of ADHD-diagnosed children fell into

two subgroups, about a third were spread across the three

subgroups comprised of predominantly typically developing

control. This further supports the notion that many mechanisms

exist by which children may meet criteria for ADHD [2]. If these

results were taken at face value, we might propose for example that

the current diagnostic criteria capture a group with a develop-

mental brain trajectory that A) is at risk, and B) is sensitive to our

functional MR measurements. We also would propose that

another group with ADHD has either typical brain development

or a pathology that likes outside of the brain systems examined

here or for which our MR measurements are not sensitive to.

Nonetheless, the work supports the potential of a biologically

based nosology in the future.

A final important finding was that children identified as typically

developing controls were found in every subgroup. Indeed, some

individuals had biological markers that are similar to those in a

clinical category yet did not meet the level for a clinical diagnosis.

Investigating contextual indices that may protect those at

biological risk for developing a disorder provides another utility

for data-driven subgroup classifications. Thus it is interesting to

consider that the brain findings here may reflect liability for

ADHD in a biologically at risk subgroup, rather than ADHD per

se—the controls in these groups may represent individuals at risk

for ADHD who had sufficient protective factors in their

development (or their genome) to avoid exhibiting the syndrome.

Table 3. Group affiliation by ADHD diagnostic category.

Subgroup

A B C D E

Control (N = 48) 18 10 7 4 9

% of Control 38% 21% 15% 8% 19%

% within Subgroup 82% 45% 77% 31% 64%

ADHD (N = 32) 4 12 2 9 5

% of ADHD 13% 38% 6% 28% 16%

% within Subgroup 18% 55% 22% 69% 36%

doi:10.1371/journal.pone.0091322.t003
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It will be interesting to follow these groups over time to evaluate

whether this type of hypothesis holds true over time.

Importantly, the fact that typically developing controls may be

heterogeneous in functional brain architecture, or brain ‘‘profiles’’,

is not a new concept either. A long line of research in the social

sciences has urged researchers to examine processes at the

individual level rather than aggregate as is typically done in

cross-sectional studies [45,49–51]. Support for this notion is found

in fMRI data, where individual differences in brain patterns

relating to indices such as performance [17,52] and gender [13]

have been found in normative samples. The approach presented

here provides a bridge between group-level aggregation and

individual-level analysis. A priori grouping based solely on

diagnostic category would miss the heterogeneity that exists within

a diagnostic category, whereas conducting individual-level analysis

would result in unique maps from which no meaningful inferences

could be made.

Amidst the heterogeneity within diagnostic categories, sub-

groups emerged that were predominantly clinical or control,

supporting some degree of biological validity to the existing

nosology. Although both ADHD and control individuals surfaced

in each of the five brain-based groups, the composition of each

subgroup contained a disproportionate number of the diagnostic

categories. Hence, our method can be used to identify disease-

associated brain physiologies much like the current approach of

comparing predefined a diagnostic group to a control group.

Varied interhemispheric and posterior-anterior functional con-

nections differentiate predominantly ADHD-comprised subgroups

from predominantly control subgroups in our study. Data in the

ADHD literature examining functional differences in the diag-

nostic subtypes (i.e. Combined type, and Inattentive type) lend

support for this particular finding [2]. Most important, the

approach presented here can help researchers better understand

between-group differences alongside within-group heterogeneity.

The present work builds from prior subgrouping algorithms that

have demonstrated success. However, community detection does

not come without shortcomings. One, the popularity of commu-

nity detection algorithms in fMRI research has grown substantially

in a short time. Along with this growth there has been an influx of

algorithms that seek to improve upon the traditionally used ones

(e.g., [53]). The proliferation of community detection programs

has occurred quickly enough such that they have yet to be formally

compared and evaluated to identify which ones are best for which

situations (e.g., number of individuals in each ‘‘true’’ group,

number of subgroups in a sample, unequal group sizes, small

sample sizes) and what scientific questions. The Newman

algorithm [19], as applied here, is widely used, but is likely not

optimal for all situations. Importantly, many community detection

approaches in the fMRI literature have been tested on relatively

large adjacency matrices and, while useful, may not be optimal for

smaller matrices where the nodes are participants.

Two, a few options exist regarding the generation of the

similarity matrices (i.e., the adjacency matrix that indicates how

similar each individual’s connectivity weights are to each other

individual) that were ultimately used with the community

detection algorithm. For instance, the connectivity mapping

results may vary based on preprocessing decisions, such as global

signal regression (GSR). We used GSR because it offers a number

of benefits such as improving the correspondence between resting-

state correlations and anatomy [54] and motion correction at the

time series level [55,56]. There is the possibility that GSR altered

connectivity patterns [57,58], which in turn may change the

degree of similarity of individuals and thus the resulting

community designations. Hence future work can investigate the

impact of these decisions on resulting subgroup designations.

Other options exist regarding the features of the connectivity

maps used to generate the similarity matrix. We also could have

created the similarity matrix using the estimates for lagged paths in

addition to or instead of the contemporaneous path estimates.

Since contemporaneous paths seem to hold information regarding

neuronal relationships, we chose to use these. Lagged effects, and

by extension, coherence in the frequency domain, could also be

informative in creating groups. Future work is also needed to

investigate approaches for arriving at the similarity matrix in a

manner that utilizes the individual-level paths in addition to the

sample-level ones. We utilize sample-level paths since they are

normally distributed across individuals and thus appropriate for

obtaining correlation values denoting similarity in values for use

with the community detection algorithm. Additionally, the high

degree of heterogeneity with regards to the individual-level paths

necessitated that we omit these when creating the similarity

matrices since including individual-level results via a distance

measure (as opposed to correlation) resulted in groups that were

too small to offer any value over individual-level analysis. As the

solution to this problem is not straightforward, more work needs to

be done to identify methods that arrive at similarity matrices that

are appropriate for data that is not normally distributed.

Data of a substantial sample size are often capable of being split

into a multitude of valid subgroup arrangements. What determines

a given demarcation rests predominantly on the features (in our

case connections) chosen to show similarities or differences

between individuals and the algorithm chosen to demarcate the

sample. What is most important in this line of work is to identify

the subgroups that are most meaningful with regard to clinical

translation. Thus, the work presented here will need to be

validated further by examining how the subgroups predict

outcomes and/or respond to treatment differently (as seen in

[2]), and how different contextual factors interact with the brain

physiology to predict diagnostic classification that can guide

prevention efforts. The method presented here is a step towards

this goal. Having demonstrated the feasibility and utility of

dynamic community detection, more work is needed across

multiple domains of inquiry to exploit the extent to which

understanding heterogeneity in brain physiology can be helpful in

guiding treatment, prevention, and intervention efforts.
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